大阪府済生会中津病院 第18回 病診連携勉強会

肥満と心臓

~こんなところにも脂肪が~

大阪府済生会中津病院 循環器内科 木島 洋一

肥満とは

肥満とは、

からだに余分な脂肪がついている状態

BMI 25以上の場合が肥満に該当

例えば、身長166cmで体重75kgの人を例に とると、 $75\div1.66\div1.66=27.2$ この人は肥満に該当します

肥満≠病気

肥満だけではまだ病気ではない!

「肥満による健康への悪影響」とは? 糖尿病、脂質異常症、高尿酸血症(痛風)、 心脳血管病、脂肪肝、睡眠時無呼吸症候群、 月経異常、ひざの痛みや腰痛、など 何故か高血圧は入っていません

肥満症 内臓脂肪

内臓脂肪とは?

主に腸間膜、大網に付着する脂肪

本来、内臓を正常な位置に保ち下垂を防ぐ、 かつては緊急時のエネルギー源として活用 元々は、そこまで悪者ではない

Table of Contents

- 1 内臓脂肪は悪者?
- 2 心臓周囲脂肪って何者?
- 。 心臓周囲脂肪が増えると何が起こる
- か? 心臓周囲脂肪はどうすればわか
- 5 心臓周囲脂肪への介入、今後の期待

肥満≠病気

肥満だけではまだ病気ではない! 「肥満症」とは?

肥満症は、肥満に該当する状態(BMIが25以上)で、かつ、肥満による健康への悪影響が 既に現れている場合、もしくは「内臓脂肪型 肥満」の場合を指す病名

皮下脂肪だけならまだ許される??

肥満≠病気

肥満だけでは病気ではない!

「内臓脂肪型肥満」とは? 内臓脂肪面積が100cm2以上 一般的にはウエスト周囲長で代用され、 男性は85cm以上、女性は90cm以上 内臓脂肪とは?

過栄養と脂肪細胞

皮下脂肪細胞と内臓脂肪細胞の特性の違い 皮下脂肪細胞は分化・増殖しやすく 内臓脂肪細胞は分化・増殖しにくい すなわち、過栄養に対し 皮下脂肪細胞は数を増やして対応(増殖) 内臓脂肪細胞は大きくなって対応(肥大) しかし、成人期以後は細胞増殖は起こりにくい 結果、内臓脂肪の肥大が進む

過栄養と脂肪細胞

肥大化した内臓脂肪細胞のもたらす悪影響

低酸素状態

アポトーシスや免疫細胞浸潤による慢性炎

酸化ストレス上昇

脂肪細胞障害

内分泌臓器としての脂肪組織の機能も障害

そして第3の脂肪

さらにエネルギー摂取過剰となった今日 従来の皮下脂肪、内臓脂肪の増殖・肥大 では対応しきれくなった脂肪が従来の脂肪 組織以外にも蓄積

異所性脂肪

肝·骨格筋·膵·心~血管周囲脂肪

心臓周囲脂肪

剖検時、心臓摘出直後

心膜下脂肪 epicardial fat

心膜下脂肪 epicardial fat の体積が 100~125cm3を超えると、

冠動脈疾患や重大心血管イベントリスクが増

Marwan M et al: J Cardiovasc Comput Tomogr. 2013; 7:3-10

内分泌臓器としての脂肪組織

アディポサイトカイン産生異常 TNF-α インスリン抵抗性、慢性炎症 レプチン 食欲抑制 PAI1 血栓形成 アンギオテンシノーゲン 血圧上昇 その他、IL-6、S100A8などなど・・・

従来のメタボリックシンドロームも これらサイトカインの異常が基盤となった病態

心臓周囲脂肪

心臓周囲脂肪は場所と発生学的由来から 心膜より外側の心膜外脂肪 paracardial fat 心膜より内側の心膜下脂肪 epicardial fat

発生学的に内臓脂肪と 同一の心膜下脂肪の 臨床的意義が大きい

心膜下脂肪 epicardial fat

心膜下脂肪 epicardial fat の過剰な蓄積は、 心筋梗塞や心房細動など、さまざまな循環器疾 患のリスク因子と指摘されている

心膜下脂肪の機能

epicardial fat の機能

Mechanical function

Metabolic function

Thermogenic function

Endocrine/paracrine function

心膜下脂肪の機能

epicardial fat の機能

Mechanical function

冠動脈の拍動そのものや、心筋の収縮による 歪みから守るためのクッションとしての役割りを 担うと考えられます

心膜下脂肪の機能

epicardial fat の機能

Metabolic function

心筋の最大のエネルギー源は遊離脂肪酸:FFA

ですが epicardial fat はその放出と取り込みを

高頻度に行っており、心筋への重要なエネル ギー

供給源の一つと考えられます

心膜下脂肪の機能

epicardial fat の機能

Thermogenic function

褐色脂肪細胞は寒冷暴露に対し熱を産生する 働きを持っていますが、epicardila fat には 特に

その関連遺伝子が多数発見されており低体温

おいて心筋を保護する役割を担うと考えられま す

心膜下脂肪の機能

epicardial fat の機能

Endocrine/paracrine function

	Regulation in GAD	Major Functions	
Adiponectin	Down-regulated	Increasing FFA oxidation; anti-inflammation	
Adrenomedullin	Down-regulated	Vasodilation; stimulation of NO synthesis; inhibition of heart hypertrophy and fibrosi	
Leptin	Up-regulated	Activation of multiple immunocytes	
Resistin	Up-regulated	Insulin resistance; thrombosis	
TNF-α	Up-regulated	Inhibition of adiponectin production; lipolysis induction; NF-xB activation	
IL-1	Up-regulated		
IL-6	Up-regulated		
MCP-1	Up-regulated	Recruitment of Inflammatory immunocytes	

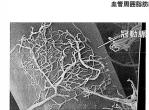
心膜下脂肪の発生学的由来

epicardial fat と狭義のpericardial fatの比

	Enjoyation Fort	Peritable Fat
Origin	Splanchnopleuric mesoderm	Primitive thoracic mesenchyme
Location	Situated between myocardium and visceral layer of pericar- dium, commonly found in atrioventricular and interventricular grooves, or directly within myocardium	Situated on the external surface of parietal pericardium
Relation to Myocardium	No fascia, contiguity with adventitia and myocardium	No compact relation to myocardium
Blood Supply	Branch of coronary artery	Mostly branch of mammary artery
Adipocytes	Generally smaller, more preadipocytes, high energy consum- ing metabolism	Mature adipocytes

epicardial fat は

褐色脂肪細胞由来で内臓脂肪と同一由来 栄養血管が異なり冠動脈から栄養されてい 5

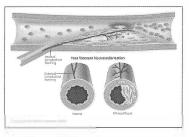

epicardial fat と心筋の間には筋膜はなく血管外膜や心筋細胞と接触している

心膜下脂肪 epicardial fat

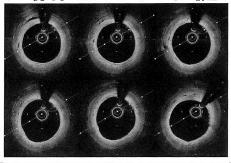
epicardial fat と

冠動脈疾患

血管外膜微小血管(vasa vasorum)の増殖


心膜下脂肪 epicardial fat

Adventitial Vasa Vasorum formation 炎症性サイトカインの plaque への侵入


心膜下脂肪 epicardial fat

Adventitial Vasa Vasorum formation 炎症性サイトカインの plaque への侵入

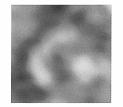
心膜下脂肪 epicardial fat

OCTが捉える Vasa vasorum からの新生血管

心臓周囲脂肪 変化なし 心臟周囲脂肪 10ml 以上減少 Nakanishi K et al: Atherosclerosis. 2014: 237: 353-360

心臓周囲脂肪と心血管イベント

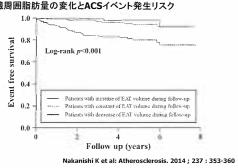
I* not 2* MINET test

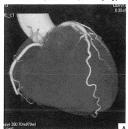

In and See Princia (ever

平均一年間での心臓周囲脂肪量の変化とCT所見の変化

In and the Marct test

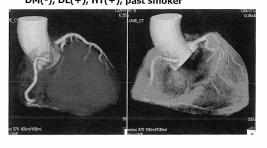
心膜下脂肪 epicardial fat


心臓CTが捉える napkin ring sign


心臓周囲脂肪と心血管イベント

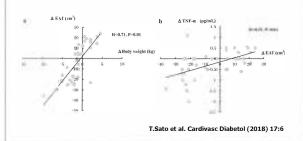
心臓周囲脂肪量の変化とACSイベント発生リスク

Case 1 心膜下脂肪 通常量


56 y.o. Male 162cm/66kg DM(-), DL(+), HT(+), non smoker

Case 2 心膜下脂肪 多量

56 y.o. Male 168cm/116kg DM(-), DL(+), HT(+), past smoker


心膜下脂肪 epicardial fat の治

基本は肥満に対しての食事、運動での減量だが 何らかの薬物での治療が可能かが。これまでい くつかの薬剤にて検討されてきた

スタチン ピオグリタゾン エゼミチブ SGLT2阻害薬

心臓周囲脂肪とSGLT2阻害薬

The effect of dapagliflozin treatment On epicardial adipose tissue volume

心臓周囲脂肪とSGLT2阻害薬

The effect of dapagliflozin treatment On epicardial adipose tissue volume

Change rate of adipose-associated markers after treatment

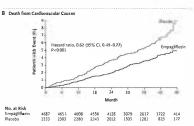
DEAT volume (cm3)	- 16.4 ± 8.3**	4.7 ± 8. 8	0. 01
ATNF-a (pg/ml)	-05 ±07"	0.03 ± 0 3	0.03
APAI-1 (ng/ml)	- 10.1 ± 18.8*	-2.0 ± 9.7	0.18

EAT epicardial adipose tissue, TNF-a tumor necrosis factor a, PAI-1 plasnini@en activator inhibitor-1

Data are expressed as mean ± SD. ** p < 0.05 compared with baseline of each group, * p < 0.1 compared with baseline of each group

T.Sato et al. Cardivasc Diabetol (2018) 17:6

心臓周囲脂肪と SGLT2阻害薬


Luseogliflozin Reduces Epicardial Fat Accumulation in Patients with type 2 Diabetes: A Pilot Study

> ルセオグリフロジンによる2型糖尿病患者の 心外膜脂肪蓄積の減少をMRIにて評価

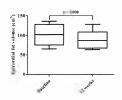
> > Bouchi R et al. Cardiovasc Diabetol (2017) 16:32

EMPA-REG OUTCOME

CVイベント高リスクの2型糖尿病患者において標準治療への empagliflozin 追加により心血管死と総死亡が低下

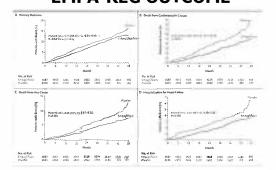
Zinman B et al: N Engl J Med. 2015 ; 373 : 2117-28

心臓周囲脂肪をめぐる、今後の期待


しかしながら、

現在は心臓周囲脂肪の定量的評価を、 完全なフルオートで提供する画像処理ソフト は開発されていない

このため、ワークステーションを使用したセミオートでの作業が必要


心臓周囲脂肪と SGLT2阻害薬

Ipragliflozin Reduces Epicardial Fat Accumulation in Non-Obese Type 2 Diabetic Patients with Visceral Obesity: A Pilot Study

Fukuda T et al. Diabetes Thera (2018) 17:6

EMPA-REG OUTCOME

Zinman B et al: N Engl J Med. 2015 ; 373 : 2117-28

心臓周囲脂肪をめぐる、今後の期待

現在の心臓CTでのスクリーニングは主に石 灰化スコアにて行われている

心臓周囲脂肪の定量的評価は、新しいリスク評価法としての地位を確立するエビデンスが 蓄積されつつある

心臓周囲脂肪をめぐる、今後の期待

石灰化スコア、心臓周囲脂肪の定量的評価 はともに保険収載された検査項目ではない

つまり現在の保険診療の中では、あくまでも付帯的サービスとなる現状がある

心臓周囲脂肪をめぐる、今後の期待

心臓周囲脂肪の減少が心血管疾患の 予後改善に寄与する可能性が示唆されてお り

今後の心臓周囲脂肪評価法の簡便化、 薬物療法の確立が期待される

心膜下脂肪 epicardial fat

大阪府済生会中津病院 循環器内科

